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Abstrset. Finite-temperature effects in the chaoticmaser model arestudied in the framework 
of a mean field variational approach. Analytic expressions far the relevant thermodynamic 
properties are given. The chaotic dynamics of the system is extended so as 10 include 
finite-temperature effects. Temperature may dramatically influetice the behaviour of 
classical trajectories. A simple physical interpretation is provided. 

i. iniroiuciion 

The maser model has always been the subject of intense investigation in the various 
fields of its application. The importance of treating the radiating atoms as a single 
quantum system was first recognized by Dicke [l], who then correctly described the 
coherent spontaneous radiation process of the system. An exact solution for the 
quantized problem, involving N identical two-level atoms interacting with a single 
mode radiation field, was given by Tavis and Cummings [2], when the dynamics of 
the system was studied at zero temperature in the rotating wave approximation (RwA), 
i.e. with inclusion of resonant terms only. As far as thermodynamic properties of the 
model are concerned, one of the most significant and interesting results was obtained 
by Hepp and Lieb [3]. They calculated exactly the thermodynamic properties of the 
system, the free energy in particular, in the thermodynamic limit ( N ,  V +  00, NI V 
finite) and showed that for a sufficiently strong coupling between the atoms and the 
field, the system exhibits a second-order phase transition from the normal phase to 
superradiance at a certain critical temperature. The results of Hepp and Lieb are 
rigorous and obtained in the RWA version of the model. Very recently, however, the 
inclusion of the antiresonant terms of the model have created a lot of interest due to 
the chaotic nature of its quantum [4] and classical dynamics [SI. In this particular 
context novel effects connected to the compactness of the atomic Hilbert space (model- 
led by a spin degree of freedom) have been pointed out [SI.  An intriguing question 
which was still left open was the study of temperature effects on the classical dynamics 
of the model. The thermodynamical equilibrium properties have been discussed in [6]. 
It is the aim of the present investigation to shed some light on the question of the 
finite-temperature dynamics of the model. We first construct the partition function of 
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relevant thermodynamic properties are obtained and the phase transitions are given a 
very simple interpretation in terms of the photon and atoms statistics. The classical 
finite-temperature dynamics of the system is then derived and shown to lead to the 
well known zero-temperature results in this limit. The effect of temperature on the 
classical chaotic dynamics is discussed and shown to strongly influence the atomic 
degree of freedom whose phase space is finite. 

The paper is structured as follows. Section 2 contains a brief review of the model. 
In section 3 we study the thermodynamic properties of the model in the context of a 
mean field variational approach and give a simple interpretation of the phase transition 
in terms of mean values of photon number and excited atoms. In section 4 the classical 
finite-temperature dynamics of this chaotic system is obtained and discussed. Section 
5 contains some concluding remarks. 

A H BIin et al 

2. Dicke model of superradiance 

A system consisting of N identical two-level atoms, coupled with an electromagnetic 
field by means of a dipole interaction, is considered. The system is enclosed in a cavity 
of volume V. The atoms are kept at fixed position and the dimension Vis much smaller 
than the wavelength of the field so that all atoms see the same field. The quantum 
Hamiltonian of the model reads 

G G' 
H = EJ,+ ~ a + a + " / ~  ( J + a +  J - a + ) + ~ 1 / 2  ( J + a + + J - a )  (2.1) 

where a+, a are the Bose operators of a harmonic oscillator mode of frequency E and 
J,  and J+(J_)  are the usual z-component and raising (lowering) spin operators. G and 
G' are coupling constants. The case with G'= 0 corresponds to the RWA. In terms of 
the Pauli spin matrices the Hamiltonian can he rewritten as 

G G' 
j = ,  E(T;+F 

afu;) +p ( a + ~ ; +  .U;)] (2.2) 

where the index j refers to the j t h  atom and 
- 

(T. =u7-iuY 
I J I '  

(T? = + iuY 
J I I  (2.3) 

3. Thermodynamic properties 

In this section we construct the free energy of the Hamiltonian (2.2) and study its 
thermodynamical properties in the framework of a variational mean field calculation. 
The most general form for the mean field density matrix is given by [7] 

Do= K exp h, ,  (3.1) 

h, ,=a,J,+n,J++aTJ_+P,a+a+P2at+PTa.  (3.2) 

Here K is a normalization constant. The parameters a,, p, are real, the parameters 
a2, p2 are complex. The set of complex parameters {a,, p,} are considered as variational 
parameters and determined by minimization of the corresponding free energy 

where 

P F  = p Tr(D,H)+Tr(D,  In Do) (3.3) 
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where p is the inverse of the temperature IlkeT, k,  being the Boltzmann constant. 
The first term on the RHS of (3.3) contains the energy of the system and the last one 
its entropy. 

It is clear that h,, is the mean field Hamiltonian except for a multiplicative factor. 
It is convenient to consider the unitary transformation which diagonalizes Do: 

U = exp[i( qJ++ ' ~ * J - + ( a + + c * a ) ]  (3.4) 

with 

D = K  exp(y/,+y'a+u). (3.6) 

In this case (3.3) can be rewritten as 

p F = p  Tr(U+DUH)+Tr(DInD) 

= p Tr(DUEU+)+Tr(D In D).  (3.7) 

Now the free energy becomes a function of the temperature, of the parameters y and 
y' and the parameters of the unitary transformation 7, 9*, and (*. It is easy to check 
that for the static properties of the system it is enough to consider 

0 
'I =;?i 0 a real number (3 .80)  

and 

(=c*.  (3 .86)  

To study the dynamical equations of motion, in the next section, we shall need the 
most general transformation of the form (3.4). The free energy of the system is easily 
computed. The result is 

+Eg2+N"Z((G+G')sin Otanhi]  
pF=p[c,cosOtanh-+- N y &er' 

L -  - 7 1 -e?' - A  

+In( 1 -e7') - N In 2 cosh- 
N Y er' 

f- y tanh-+ y'- ( ;) 2 2 1-e7' (3.9) 

One can now determine the parameters y, y ' ,  0 and ( by minimizing the above 
expression with respect to these variables. We get for the variations with respect to 0 
and ( 

_- JpF-O=2~(+N' /2(G+G')  sin OtanhY 
2 

(3.10) 
Jt 

dpF- N .  y ( G + G ' 1 2 N .  -sin 8 cos 0 tanh 2 Y  -. 
2 

-O=-~-s in  Otanh-- as 2 2 E 2  

These equations have two solutions, which correspond to the normal and to the 
superradiant phase, respectively, 

e = o  .f=O (normal phase) (3 .11a)  
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and 
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&’ 1 
(Gf G’)’ tanh y/2 

C o s # = -  

(3.11b) 

=sin 8 tanh yl2 (superradiant phase). 

Notice that the solution (3.11b) is only possible for sufficiently strong coupling, i.e. 
(G + G)’ > E’. The parameters y, y’ obtained in the same manner are of course related 
to the temperature of the system and are given by 

y=-P& (normal phase) 

y = +&/COS # (superradiant phase) 

(3.1211) 

(3.126) 

y’ = - P E  (both phases). (3.12~) 

We see from the above equations that the existence of the superradiant phase 
depends on the temperature. For (G + G’)’< E’ no phase transition occurs in the 
system at any temperature. For (G+ G‘)’> e’ there is a critical temperature T, given 
by the relation (for its inverse p c )  

&* - -tanh ~ p J 2  
(G+G)’- 

(3.13) 

at which the system changes discontinuously from one state to the other. Equation 
(3.13) has been obtained in [8] by a different procedure and is equivalent to the 
mathematically rigorous result of Hepp and Lieb [3] in the case G = O .  

The average density of photons and of excited atoms in both phases can be easily 
computed 

1 
N N N O = - L  Tr(D,a+a) = --Tr(DUa+aU+) 

=[O 
normal phase (3.14a) 

(G+ G‘) /E  sin 0 tanh y / 2  superradient phase (3.14b) 

where p in the superradiant phase is determined by (3.126), 

tanh y/2. 
p( G+ G‘)’ 

Y =  E (3.15) 

The solutions to this equation can be obtained graphically or numerically and results 
are shown in figure 1 for the indicated parameter values. 

The average density of excited atoms is given by 

y = - P E  normal phase (3.16a) 
superradiant phase (3.166) =f tanh  y / 2  [y(P/&)(G+G,)’ tanhfy 

in both phases. 
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Figure 1. The relation between the variational parameter y and the inverse temperature 6 
of the system in the superradiant phase fortwa different values ofthe photon-atom coupling 
parameter G,.  The dots represent the values of the parameter cos 8 which relates p to y. 

The set of equations (3.14a),  (3.14b) and (3.16) provides us with a very simple 
physical picture of what is going on. For the normal phase, the average photon density 
is always zero and the average density of excited atoms is different from zero and fixed 
by (3.160).  In contrast, in the superradiant phase the average photon density is different 
from zero but decreases as  a function of temperature until the critical temperature is 
reacneu. tu L I U ~  puirrr ~iir avciagc priururi uerisny 1s zrru anu ~ i i c  avciage uensny UI 

excited atoms tends to its normal phase value. Here, the superradiant phase merges 
into the normal phase. This is illustrated in figure 2 for the indicated values of the 
coupling parameters. Figures 3 ( n )  and 3 ( b )  show the behaviour of the energy and 
entropy in the normal and superradiant phases as functions of the temperature, under 
the same conditions. 

a minimum and the corresponding free energy of the normal phase a maximum. Other 
than this, the normal phase has always the minimum energy. 

In order to get a quantitative idea of how reasonable such an approximation is, 
we compare the result obtained here for the energy at T=O with the exact one for 
parameter values G = 1, G'= 0.4: E,, = -5.559 43, E,,= -5.556. 

4. Classical finite-temperature dynamics 

The following procedure to derive the classical finite-temperature dynamics of systems 
is very general and should be valid for all systems described in terms of generators of 

_... L.> I .  .L:. __:_. .L. _L ..._ >...-:A..:- __.. .-> .L^ >.~.-?... .c 

It  :r "Icn a.1cII ,-hnrL th.t xlih;lm thn Ll.nerr.d;.ln+ nhneo P ~ i r t ~  ;tc fmm PnPm.l io 
I, 10 *,a" U'&', .,..uun L..YL I.... 1- L L L I  ""y'-..'U.Y... y L . U " C  In.=.=, .LO La*.. L"b16, 1 1  
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Figure 2. The average density ofexcited atoms (I,)  as well as the average photon density 
(a'a) of the system as functions of the invene temperature j3 in the superradiant phase 
(SP; p > p.) and in the normal phase (NP, 0 < p.) for coupling constants G, = 1.5 and 
G=0.5 and E = 1. The value of the inverse of the critical temperature 7;' at which the 
system changes phase is indicated by an arrow and the two phases separated by a velfical 
dotted line. 

la1 

NP 

SP 

SP 

Flgure 3. ( a )  The energy E and entrbpy S in the normal (NP) and superradiant (SP) phase 
as functions of the inverse temperature p for G+= 1.5 and G.=O.5. E = 1. ( b )  The Same 
as ( a )  for G+= 1.1 and G.0.9. 
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Lie groups. The maser model consists of one possible application of the method [91. 
It consists of constructing appropriate pairs of canonical variables and calculating the 
corresponding classical Lagrangian of the system ( h  = l) ,  

L = i T r ( D U o f )  - Tr(DUHU+) (4.1) 

with U in the form given in the previous section, (3.4), 

U = exp[i(qJ++ q*J-+,$a++f*o)] .  

After some algebra one obtains the following intermediate results, necessary to COnStNct 
the Lagrangian, 

Tr(DUU+)=  -.?z(9i*-7jq*)sinZJ;j;j7 (4.20) 

Tr(DUJ-U+)=i?z--- (4.26) 

( 4 . 2 ~ )  

(4.2d) 

(4.2e) 

(4.2f) 
with =Tr(D,J,). We immediately notice that the two variables q, q* in the unitary 
transformation are not canonically conjugate. But it is possible to find canonical 
variables if one performs the transformation [ 101 

Finally we get 

L = (&* - d*S) + (&* - - &f*f + ESS* + E j ,  
2 2 

Defining now new variables 

(4.4) 

(4.5a) 

(4.56) 

we obtain the classical Lagrangian which corresponds to the quantum (chaotic) maser 
system with finite temperature, 

- 2 J , - H 1  " 2  
L=p,q, +p2q2- EH, - eH2- EZ - [ ] (G+pIp2+ G-q,qJ (4.6) 
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with H , = f ( p i + q : ) ,  H 2 = i ( p : + q : ) ,  G ,=G*G' ,  from which the classical equations 
of motion can be derived: 

A H Blin et a /  

q 2 = & p 2 + G + [  - 2 J z - H 1  ] ' I 2  P ,  
(4.7) 

The above equations have been derived in the limit of zero temperature [ 6 , 8 ]  and 
shown to exhibit classically chaotic behaviour. Our equations reduce precisely to the 
ones in [ 6 , 8 ]  in the zero-temperature limit where L = - N / 2 .  

The only significant difference from the equations with temperature resides in the 
terms involving the square root. As extensively discussed in [ 6 ]  and [7] the physics of 
this term stems from the finiteness of the atomic (or spin) phase space. The maximum 
amount of energy allowed for this degree of freedom is - 2 x .  This has a dramatic 
effect on periodic orbits of sufficiently high energy. They exhibit many crossings and 
cusps, since they cannot escape from the border of their phase space, H, = N. The 
temperature will enhance this effect in the sense that it will become apparent for smaller 
energies. For finite temperatures the 'border' of this phase space shrinks, -flz < N, 
and its physical effects-the many self-crossings and cusps of periodic orbits-will 
appear sooner, for lower energies, as in the corresponding zero-temperature limit. A 
simple physical interpretation can be given. When the system is at zero temperature, 
all atoms are in their ground states (if we take for the simplicity the normal phase) 
and therefore, as the total energy of the system increases, more and more atoms are 
being excited until all of them are excited and no more energy can be pumped into 
the spin degree of freedom. For finite temperatures, the 'ground state' of the system 
contains already some excited atoms, so that the total energy still allowed is smaller. 
What one sees here is the classical analogue of such physics. 

To illustrate the phase space occupied by chaotic orbits we show in figures 4(a), 
4(b) and 4(c) PoincarC sections for the spin degree of freedom ( q l ,  p I )  at q2=0 .  for 
the three different values of the total energy E =6.2,  8.5 and 25,  respectively. Note 
that there exists a scaling which lets us interpret these figures in different ways. This 
can be seen if one rewrites the Lagrangian as 

L =  p , q ,  +p2q2-  E H ~  - E H ~ -  EL - (4.8) 

where 6* = ( - 2 J Z / N ) ' l 2 ,  G,  = (-tanh t y )  G,, with y a function of p, see (3.16). That 
is, a given solution of the equations of motion can be obtained by any combination 
of the parameters N, p and G,,  as long as E ,  6* and jz have certain fixed values. As 
an example, figures 4(a), 4(b) and 4(c) can each be regarded as representing a system 
in the normal phase with alternatively N = 9 at inverse temperature p =CO, or N = 16 
at p = 1.27, or N = 30 at p = 0.62, or N = 50 at p = 0.36, etc, with the coupling constants 
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Fiyre 4. Poincad sections 01 the spin degree of 
freedom at q2. = 0 for JZ = - 5 ,  E = 1 and 8, = 0.7, 
S.  = G.3. These &ores can be inieipreied in iems 
of different temperatures and panicle numbers. see 
the discussion in the text. The vaIucs of the total 

-5 0 5 energy ofthe system are ((11 E = 6.2, ( b )  8.5 and (c) 
-5  

q ,  25. 

G, adjusted correspondingly. The values of the other parameters are x=-9 /2 ,  
G, = 0.7, G- = 0.3 and E = 1. 

For system energies much smaller than the one in figure 4(a) ,  E << 6, there is little 
chaos, For large energies the chaotic behaviour diminishes again since the dynamics 
of the oscillator term dominates. This is because the phase space of the spin degree 
of freedom is restricted and the phase space of the oscillator degree of freedom is not. 
In the range of energies presented in figures 4(a )  and 4(b) the amount of chaos is 
!a:ge. :; s:azs :a gei siiiz%r iii figiiiz 4(i). 

5. Conclusions 

We have studied finite-temperature effects in the chaotic maser model in the framework 
of a mean field variational approach. Analytic expressions for the re!evz!!! !hcrmn- 
dynamic properties have been derived and a simple picture for the phase transition 
emerges. The method is then extended to describe large amplitude, nonlinear dynamics 
of the system at finite temperatures. The effect of the temperature on classical periodic 
orbits is obtained and a physical interpretation is given. 



2252 A H Blin et a/ 

References 

[I] Dicke R H 1954 mys. Rev. 93 99 
[2] Tavis M and Cummings F W 1968 Phys. Rev. 170 379 
[3] Hepp K and Lieb E H 1973 Ann. Phys. 76 360 
[41 Lewenkopf C H, Nemes M C, Marvulle V, Pato M Pand  Wreszinski W S 1991 phys. Lett. A 155 113 
[ 5 ]  Arecchi T and Copunens E 1970 Phys. Rev. A 2 1730 

[6 ]  de Aguiar M A M.  FUN^^ K. Lewenkopf C H and Nemes M C 1991 Europhys. Letr. 15 125 
[7] de Aguiar M A M,  FUN^ K and Nemes M C 1991 @onrum Oprics 3 305 
[8] Him F T 1973 Phys. Reo. A 8 1440 
[9] da Rovidencia J and Fiolhais C 1985 Nucl. Phys. A 435 I90 

Graham R a n d  Hoenerbach M 1986 Phys. Rev. Lett. 57 1378 

Yamamura M. da  Providencia J, Kuriyama A and Fiolhais C 1989 nog. Reor. Phys. 81 1198 
[IO] Yamamura M, da Providencia J and Kuriyama A 1990 Nuel. Phys. A 514 461 


